High Temperature Performance with Alkylated Naphthalene

The 2nd Asian Industrial Lubricants Conference Singapore November 12 – 13, 2019

Presentation Outline

- Alkylated Naphthalene Background
- Physical/Chemical Properties
- Performance Evaluations
- Summary

Alkylated Naphthalenes

- High Performance Group V Base Oils
- Co-Base Oil
 - With other synthetics or Group II and Group III oils
 - To enhance thermal and oxidative stability, varnish control and additive response
 - To extend the lifetime of high-performance lubricants

Alkylated Naphthalene Structure

R1 to R8 are independently a linear or branched alkyl group or hydrogen.

The core naphthalene system consists of two fused six-membered rings with an electron rich conjugated π system.

Alkylated Naphthalene Synthesis

- Physical properties are a result of:
 - Number of carbons in the alkyl group (controlled by raw material selection)
 - Degree of branching of alkyl groups (controlled by raw material selection)
 - Number of alkyl groups on naphthalene ring (controlled by chemical processing)

Presentation Outline

- Alkylated Naphthalene Background
- Physical/Chemical Properties
- Performance Evaluations
- Summary

Aniline Point

- Alkylated naphthalenes can aid in solubilizing additives in non-polar base stocks
- Varying balances of Mono Alkylates and Poly Alkylates impart a variety of properties including, but not limited to:
 - Aniline point
 - Viscosity Properties

- Volatility
- Flash Point

Alkylated Naphthalene Properties

	Viscosity @ 40°C	Viscosity @ 100°C	Viscosity Index	Aniline Point	Noack Volatility CEC L40	Pour Point	Flash Point
	ASTM D445	ASTM D445	Calculated	ASTM D611	ASTM D6375	ASTM D97	ASTM D92
AN-7	22 cSt	3.8 cSt	22	40°C	39 wt%	<-48°C	206°C
AN-8	36 cSt	5.6 cSt	90	42°C	12 wt%	-33°C	236°C
AN-15	114 cSt	13.5 cSt	115	94°C	2.2 wt%	-39°C	260°C
AN-19	177 cSt	18.7 cSt	119	103°C	1.4 wt%	-26°C	285°C
AN-23	193 cSt	19.8 cSt	118	N/A	<1.0 wt%	-21°C	310°C

Performance Features of Alkylated Naphthalenes

- Thermo-oxidative stability
 - Excellent performance because of the electron-rich naphthalene ring
- System cleanliness
 - Excellent varnish control
- Volatility
 - Low volatility as compared to other base stocks
- Viscometrics and VI
 - A variety of viscosities with low pour points and good VI

Performance Features of Alkylated Naphthalenes

- Solvency
 - An intermediate aniline point that has the right balance of polarity
 - Good additive response
 - No surface competition with the additives
- Base oil modifying properties
 - Excellent compatibility with other base stocks to achieve balanced and enhanced performance
- Hydrolytic stability
 - No functional groups that can hydrolyze

Performance Features of Alkylated Naphthalenes

- Good lubricity/film thickness/reduced friction
- Good seal swelling properties
- Nuclear radiation resistance
- Good air release properties
- HX-1 Approvals "Food Grade"

Main Applications

- Automotive and Stationary Engine Oils
- Automotive and Industrial Gear Oils
- High Temperature Chain Lubricants
- Paper Machine Oils
- Hydraulic Oils
- Circulating Oils/Turbine Oils/R&O Oils
- Screw Compressor Oils
- Heat Transfer Oils
- Windmill Oils and Greases
- Automotive and Industrial Greases

Presentation Outline

- Alkylated Naphthalene Background
- Physical/Chemical Properties
- Performance Evaluations
- Summary

Performance Evaluations

- Thermo-oxidative stability
 - Panel Coker
 - Rotating Pressure Vessel Oxidation Test (RPVOT)
 - Pressure Differential Scanning Calorimetry (PDSC)
- Hydrolytic Stability
 - Beverage Bottle Test
- Volatility
 - Thin Film

Performance Evaluations

- Friction
 - FZG
- Seal Swell
 - Volume Change
- High Temperature Chain
 - Evaporation
 - Varnish Control
- Plywood Manufacturing
 - Varnish Control

Performance Evaluations

• Grease

- Lithium 12-Hydroxystearate
- Lithium Complex
- Polyurea
- Aluminum Complex

Thermo-oxidative Stability

Panel Coker (FTM 791-3462)

	100% PAO	10% AN-8	10% AN-15	10% AN-19
	(ISO VG 220)	90% PAO	90% PAO	90% PAO
Coking Value (mg)	9.0	1.0	3.0	2.0

Temperature Conditions: Test Panel: 200°C; Oil Sample: 140°C

Grp III (ISO VG 46) vs. Grp III Modified with AN

Tests	0.7% R&O Package 99.3% Group III	0.7% R&O Package 15.0% AN-8 84.3% Group III
RPVOT		
ASTM D2272		
Lifetime, minutes	1339	1926
CM Thermal Stability		
ASTM D2070		
Condition of Steel Rod: Color	2	2
Condition of Copper Rod: Color	5	5
Total Sludge (mg/100 ml)	10.75	5.30

High Temperature Performance with Alkylated Naphthalenes

Grp III vs. Grp III Mod with Ester and AN

	0.6% Add Pack*	0.6% Add Pack	0.6% Add Pack	0.6% Add Pack	0.6% Add Pack
Tests	100% Group III*	78% Group III 22% Ester***	78% Group III 11% Ester 11% AN-8	78% Group III 22% AN-8	100% AN-8
RPVOT					
ASTM D2272					
Lifetime, minutes	1194	1023	1179	1288	1689

*Ashless package based on nitrogen-phosphorus-sulfur

**Group III ISO VG 46

***Saturated Polyol Ester

Alkylated Naphthalene Synergy with ADPA AO

HX-1 Base Oils	PAO 10	White Oil	PAG	AN-19 Food Grade	Ester
RPVOT, ASTM D2272 Lifetime (Minutes)					
Control (no AO)	55	31	15	76	115
+0.2% ADPA*	268	141	40	905	470

* Alkylated diphenylamine

PDSC Performance of AN Modified Group II PDSC (ASTM D6186) 160°C, 500 psi oxygen

High Temperature Performance with Alkylated Naphthalenes

PDSC Performance of AN Modified PAO PDSC (ASTM D6186) 170°C, 500 psi oxygen

Hydrolytic Stability

Hydrolytic Stability (ASTM D2619)

Group II Base Oil (ISO VG 46) modified by adding 10% of different Group V Base Stocks

Volatility

Thin Film Volatility

2 grams in aluminum pan for 24 hours

	Weight Loss, %				
	200°C	225°C	250°C		
AN-19	8.5	19.7	41.6		
PAO 40 cSt	17.9	29.8	45.4		
20% AN-19 80% PAO 40 cSt	9.4	20.2	39.6		
20% Ester 80% PAO 40 cSt	28.5	43.1	56.7		

Volatility Results

10 grams in aluminum pan for 2 weeks at 120°C

High Temperature Performance with Alkylated Naphthalenes

Friction Testing

FZG (ASTM D5182 Modified), Temp/Friction Study Test Oils with 0.3% Antiwear Additive

High Temperature Performance with Alkylated Naphthalenes

Seal Swell

High Temperature Performance with Alkylated Naphthalenes

Seal Swell (ASTM D471)

Alkylated naphthalenes will impart Seal Swell Properties to Non-Polar Base Oils.

High Temperature Performance with Alkylated Naphthalenes

High Temperature Chain Lubricants

High Temperature Chain Lubricants

Alkylated naphthalenes extend fluid lifetime by:

- Reducing volatility to retain the fluid longer
- Imparting thermal and thermo-oxidative stability to inhibit viscosity increase and varnish formation

Chain Lubricant Market

Application and Base Fluid By Temperature

Temperature	Application	Suitable Base Fluids
<150°C	Transport, agriculture, and mining equipment	Mineral Oil, Vegetable Oil, Diester, PAO, PAG
150 – 220°C	Bakeries	Water Soluble PAG, PAO, Ester, Alkylated Naphthalenes
180 – 250°C	Automobile & beverage can painting	Trimellitate / Dimer Esters, PAO, Alkylated Naphthalenes
220 – 300°C	Plywood/textile/ceramic/ plastic film manufacturing	Dimer / Polyol Esters Alkylated Naphthalenes
>600°C	Pottery/brick/cement kilns	PAGs as carrier for solid lubricants (e.g. graphite)

Typical Chain Lubricant Formulation

- Base fluid with:
 - 0 20% Thickener / Tackifier / Adhesion Improver
 - Polymerics: PIB, VI improvers
 - 1 5% Antioxidant(s)
 - Combinations of aminics and phenolics
 - 0 5% Extreme Pressure / Antiwear
 - Phosphates, amine phosphates, S/P type (triphenyl ZDP, thiophosphate)
 - 0 1% Corrosion Inhibitor
 - Ferrous: Organic acids, partial esters, amides, sulfonates
 - Copper: triazoles, thiazoles
 - 0 0.1% Defoamer
 - Organics, silicones, modified siloxanes

Test Procedure

- Testing was conducted to determine if the addition of alkylated naphthalene to chain lubricant formulations would help with the high temperature performance.
- Test Method:
 - 3 g of test fluid are placed in an aluminum pan
 - Sample is heated at 260°C for 8 hours
 - Report:
 - % evaporation loss
 - Condition of fluid

Reduction of Evaporation Loss to Retain Fluid

	POE 1963*	97% POE 1963 3% AO Blend [†]	80% POE 1963 20% AN-19	77% POE 1963 20% AN-19 3% AO Blend
Blend Number	1	2	3	4
Evaporation Loss 8 hours @ 260°C	94%	94%	71%	68%

AN-19 alone has an evaporation loss of 43%.

- * POE 1963 is an ISO VG 68 polyol ester recommended for high temperature chain lubricants (180–300°C)
- + AO Blend is a 50:50 mixture of alkylated diphenylamine with phenyl-alpha naphthylamine

Evaporation Loss Results

	POE 1963	AN-19	80% POE 1963 20% AN-19
Evaporation Loss 8 hours @ 260°C	94%	43%	Theoretical: 84% Actual: 71%

Reduction of Evaporation Loss to Retain Fluid

	88% POE 1963 12% PIB 950	85% POE1963 12% PIB 950 3% AO Blend	68% POE 1963 12% PIB 950 20% AN-19	65% POE 1963 12% PIB 950 20% AN-19 3% AO Blend
Blend Number	5 Hazy	6 Hazy	7 Clear	8 Clear
Evaporation Loss 8 hours @ 260°C	95%	96%	69%	69%

POE 1963 alone has an evaporation loss of 94%.

Appearance of Blends

• The ester alone is clear (left). When 12% PIB was added to the ester the sample became hazy (middle); however, when 20% alkylated naphthalene was added in combination with PIB, the blend remained clear (right).

Samples Before Aging

High Temperature Performance with Alkylated Naphthalenes

Samples After Aging at 260°C for 8 Hours

- The lighter brown samples do not contain AN-19 and resulted in thin, hard varnish.
- The darker samples contain AN-19 and resulted in less evaporation leaving thicker/ viscous but still liquid samples.

Alkylated Naphthalene Blends After Aging

• The viscosity of the samples that <u>contain</u> AN-19 increased after being heated, but the remaining samples were self-healing when scratched.

Alkylated Naphthalene Blends After Aging

• The samples that <u>contain</u> AN-19 flow after oxidation.

Varnished Blend Without Alkylated Naphthalene

• The samples <u>without</u> AN-19 created a hard varnish on the metal surface and were not selfhealing when scratched.

Extended Service Life of an AN Modified POE

High Temperature Performance with Alkylated Naphthalenes

High Temperature Chain Lubricants

- The addition of **AN-19** resulted in:
 - Sample clarity
 - Less evaporation loss
 - Varnish control
- The samples containing **AN-19** remained liquid:
 - Retaining lubrication
 - Avoiding varnish flake off

Plywood Manufacturing

High Temperature Performance with Alkylated Naphthalenes

Conveyor Belt Oil for Plywood Manufacturing

Alkylated Naphthalenes:

• When used for the first time in a press, dissolved the deposits on drive roller friction liners that had formed from an oil previously used.

Plywood Manufacturing – Hot Presses

Operating Conditions:

Temperature: 240°C to 260°C

Production Speed: Up to 2 m/s

System Pressure: ~ 5000 kPa

Fluids Present: Lubricants, Release Agents and Adhesives

High Temperature Performance with Alkylated Naphthalenes

Plywood Manufacturing – Hot Presses

 Friction liners coated in heavy deposits from lubricant oxidation products and other contaminants

Cleaning of Equipment

High Temperature Belt Oil for Plywood Manufacturing

- Prior to using the belt oil containing AN-19, pictures were taken of the friction liners showing heavy deposits from oxidation products of the previously used oil.
- After 6 months of use with the belt oil containing the **AN-19**, it was observed that the oil was very dark and the friction liners were completely clean.
- The darkened oil containing the **AN-19** that had dissolved the deposits was exchanged for fresh oil, and the deposit formation and oil darkening did not reoccur

Removal of Deposits Formed from a Previous Oil

Before Fluid Change

6-Months after Fluid Change with **AN-19**

High Temperature Performance with Alkylated Naphthalenes

Plywood Manufacturing

Cleaning of equipment by AN-19:

- Reduced unwanted noise, vibration and wear of the equipment
- Greatly reduced maintenance cost

High Temperature Performance with Alkylated Naphthalenes

Properties of AN Modified Li 12-OH Grease

	PAO 10 (88%) Li 12-OH (12%)	AN-15 (93%) Li 12-OH (7%)	
Color/Appearance	Tan / Smooth	Amber / Transparent	
Cone Penetration (ASTM D217)			
Unworked	275	285	
60 Stroke	273	288	
10,000 Stroke	309	335	
100,000 Stroke	350	366	
Oil Separation	4.10%	2.80%	
Dropping Point	202°C	200°C	
Viscosity @ -40°C	4.0 x 10 ⁶ mPa.s	6.6 x 10 ⁶ mPa.s	
TGA	233°C	304°C	
PDSC (500 psi O ₂ , 210°C)	400 W/g at 3.7 minutes	5 W/g at 5 minutes	

Li 12-OH Grease – Color/Appearance

100% PAO Grease

100% AN-15 Grease

Less thickener = improved low temperature properties Bridging solvent = reduced opaqueness Effective dispersant = smooth grease

High Temperature Performance with Alkylated Naphthalenes

PDSC (ASTM D5483)

- Procedure:
 - Sample size 2.0 mg
 - Ramp 100°C/min to test temperature
 - 155 to 210°C
 - Equilibrate at test temperature
 - 2 minutes
 - Once equilibrated open O2 valve and pressurize to 500 psi
 - Within 2 minutes
 - Adjust O2 flow rate to 100 mL/min

Oxidation Induction time is calculated from when O2 valve is opened.

PDSC Explanation

High Temperature Performance with Alkylated Naphthalenes

PDSC (ASTM D5483) at 180°C

High Temperature Performance with Alkylated Naphthalenes

Grease Oxidation Stability (ASTM D942)

	Li 12-OH / 100% PAO 10	Li 12-OH / 90% PAO-10 ; 10% AN-15	Li 12-OH / 50% PAO 10 ; 50% AN-15	Li 12-OH / 100% Group III
Grease Oxidation Stability				
ASTM D942				
Pressure Drop	38 psi @24 hours	9 psi @ 100 hours	0 psi @ 100 hours	16 psi @ 7 hours
			2 psi @ 280 hours	

High Temperature Performance with Alkylated Naphthalenes

Performance of AN Modified Li Complex Grease

Tests		3.35% Additive Package*		3.35% Additive Package*
Base Grease	Lithium Complex Grease with 100% PAO 10		Lithium Complex Grease with 30% AN-19 ; 70% PAO 10	
EMCOR (ASTM D6138)				
10% Synthetic Sea Water, 1 week	2 (some stain)	0 , 0 (some stain)	0 (some stain)	0,0
PDSC (ASTM D5483)				
Onset Point, 500 psi, 200°C (min)		36		42
Grease Oxidation Stability (ASTM D942)				
100 h, pressure drop (psi)	86	2	0	1
Cone Penetration (ASTM D217)				
Unworked	298	300	281	284
60 Strokes	299	310	282	294
10,000 Strokes	303	317	292	309

*Additive Package contains: calcium sulfonate, ADPA, sulfurized olefin/fatty oil, ZnDTP, and tolyltriazole derivative

Performance of AN Modified Li Complex Grease

Tests		3.35% Additive Package*		3.35% Additive Package*
Base Grease	Lithium Complex Grease with 100% PAO 10		Lithium Complex Grease with 30% AN-19 ; 70% PAO 10	
Four Ball Weld (ASTM D2596)			,	
10 seconds, 25°C, 1800 rpm				
OK Load (kgf)	120	240	140	280
Weld Load (kgf)	140	260	160	300
Four Ball Wear (ASTM D2266)				
1 hour, 75°C, 40kgf, 1200 rpm, (mm)	0.53	0.45	0.50	0.41
Copper Corrosion (ASTM D4048)				
24 hours, 100°C	2b	1b	1b	1a
Grease Water Stability (DIN 51807-1)				
3 hours, 40°C	0	0	0	0
3 hours, 90°C	2	2	2	2

*Additive Package contains: calcium sulfonate, ADPA, sulfurized olefin/fatty oil, ZnDTP, and tolyltriazole derivative

Performance of AN Modified Li Complex Grease PDSC (ASTM D5483) 200°C, 500 psi oxygen

High Temperature Performance with Alkylated Naphthalenes

Performance of AN Modified Polyurea Grease

		8.05% Additive		8.05% Additive	
Tests		Package*		Package*	
Base Grease	Polyurea Grease with 100% PAO 10		Polyurea G	Polyurea Grease with	
base drease			30% AN-19 ; 70% PAO 10		
EMCOR (ASTM D6138)					
100% Synthetic Sea Water, 1 week	5	0 (some stain)	5	0	
PDSC (ASTM D5483)					
Onset Point, 500 psi, 210°C (min)	17	51	27	>120	
Grease Oxidation Stability (ASTM D942)					
100 h, pressure drop (psi)	4		0		

*Additive Package contains: synergistic rust inhibitor blend, ADPA, sulfurized fatty acid ester, ashless dithiocarbamate, and tolyltriazole derivative

High Temperature Performance with Alkylated Naphthalenes

Performance of AN Modified Polyurea Grease

		8.05% Additive		8.05% Additive	
Tests		Package*		Package*	
Base Grease	Polyurea G	Polyurea Grease with		Polyurea Grease with	
base Grease	100% PAO 10		30% AN-19 ;	30% AN-19 ; 70% PAO 10	
Four Ball Weld (ASTM D2596)					
10 seconds, 25°C, 1800 rpm					
OK Load (kgf)	80	120	80	120	
Weld Load (kgf)	100	140	100	140	
Four Ball Wear (ASTM D2266)					
1 hour, 75°C, 40kgf, 1200 rpm, (mm)	0.60	0.52	0.58	0.49	
Copper Corrosion (ASTM D4048)					
24 hours, 100°C	1b	1b/2a	1b	1b/2a	
Grease Water Stability (DIN 51807-1)					
3 hours, 40°C	0	0	0	0	
3 hours, 90°C	1/1.5	0	0	0	

*Additive Package contains: synergistic rust inhibitor blend, ADPA, sulfurized fatty acid ester, ashless dithiocarbamate, and tolyltriazole derivative

Performance of AN Modified Polyurea Grease PDSC (ASTM D5483) 210°C, 500 psi oxygen

High Temperature Performance with Alkylated Naphthalenes

Performance of AN Modified Al Complex Grease PDSC (ASTM D5483) 180°C, 500 psi oxygen

High Temperature Performance with Alkylated Naphthalenes

Presentation Outline

- Alkylated Naphthalene Background
- Physical/Chemical Properties
- Performance Evaluations
- Summary

Summary – Why Use Alkylated Naphthalenes?

- Diverse viscosity range for flexibility in designing lubricants for a variety of applications
- Excellent thermal & thermo-oxidative stability
- Excellent varnish control
- Low volatility with higher viscosity
- Superior solubility characteristics than Group II, Group III and Group IV (PAO)

Summary – Why Use Alkylated Naphthalenes?

- Inherent hydrolytic stability
- Excellent additive response
- Good low pour point
- Good film thickness and film strength
- Good seal swelling

King Industries Offers

- I Alkylated Naphthalenes
- Blends/Packages
- Friction Modifiers
- Antiwear Additives
- Antioxidants
- Extreme Pressure Additives
- Corrosion Inhibitors
- Rust Inhibitors
- Rust Preventives
- I Technical Product Support

For more information, contact:

Sachin Kumbhar Environ Speciality Chemicals Pvt. Ltd. Mumbai, India Mob: +91-9075313595 Email: <u>sachin@environchem.com</u>

