CERVICAL CORD ATROPHY AND DIFFUSION TENSOR IMAGING IN MOGAD, AQP4-AB NMOSD AND MS

Romina Mariano1, Silvia Messina1, Adriana Roca-Fernandez1, Ana Cavey1, Rosie Everett2, Sandra Reeve2, Maria Isabel Leite1, Yazhuo Kong1,3, Jacqueline Palace1

1Nuffield Department of Clinical Neurosciences, University of Oxford, 2Oxford University Hospitals NHS Trust, 3The Key Laboratory of Behaviour Science, Institute of Psychology, Chinese Academy of Sciences

BACKGROUND & AIM

• Spinal cord involvement is an important feature of antibody-mediated demyelination, as occurs in myelin-oligodendrocyte glycoprotein antibody disease (MOGAD) and aquaporin-4 (AQP4-Ab)-positive neuromyelitis optica spectrum disorder (NMOSD), as well as in multiple sclerosis (MS).

• Cervical cord MRI metrics are emerging as an important outcome measure in MS but their application in AQP4-Ab-positive NMOSD and MOGAD are not well studied.

• We aim to compare cervical cord atrophy and diffusion measurements between these conditions and also to healthy volunteers (HV) and to explore their clinical relevance.

METHODS

• Adult patients with spinal cord involvement and either relapsing remitting MS (n = 20), AQP4-Ab NMOSD (n = 20) or MOGAD (n = 20) were recruited at least six months outside of a relapse.

• Clinical details were collected and an Expanded Disability Status Scale (EDSS), Brief Pain Inventory and cervical cord 3T MRI (3DT1, 3DT2, axial T2*, diffusion) were done under the appropriate ethics. Matched HV (n = 20) underwent the same MRI scan.

• T2w scans were used for lesion location segmentation using FSL. T1w scans were used to calculate the mean cervical cord cross-sectional area (CSA) across C1-C7 using SCT (v.4.0). Diffusion imaging was pre-processed using FSL topup and eddy, followed by registration and metric extraction using SCT.

RESULTS

DEMOGRAPHICS & IMAGING ANALYSIS

Table 1. Demographics

<table>
<thead>
<tr>
<th></th>
<th>MOG</th>
<th>AQP4</th>
<th>MS</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Mean age</td>
<td>40.3</td>
<td>40.8</td>
<td>44.9</td>
<td>44.1</td>
</tr>
<tr>
<td>Sex F/M</td>
<td>10/10</td>
<td>13/7</td>
<td>13/7</td>
<td>13/7</td>
</tr>
<tr>
<td>Ethnicity %</td>
<td>Italian/Caribbean</td>
<td>Asian</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lesion status</td>
<td>4/20</td>
<td>2/20</td>
<td>0/20</td>
<td>0/20</td>
</tr>
<tr>
<td>Median disease duration in months (range)</td>
<td>40.5 (8.5 – 239.9)</td>
<td>141.5 (8.5 – 297.7)</td>
<td>147.1 (50.4 – 252.1)</td>
<td>NA</td>
</tr>
<tr>
<td>No. relapse/patient</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>NA</td>
</tr>
<tr>
<td>No. myelitis/patient</td>
<td>1.1</td>
<td>2.3</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

GROUP COMPARISON & CLINICAL RELEVANCE

Figure 1. Cervical cord segmentation

Figure 2. Grey matter and lesion segmentation

Figure 3. FA map with segmented cord in native space

Figure 4. Within-group differences based on lesion status

Grey line dotted line in each modality represents the healthy volunteer mean

Figure 5. (A) Relationship between mean cross-sectional area and disability in all disease groups, (B) Mean corticospinal tract FA and disability in all disease groups, and (C) Mean spinothalamic tract FA and pain score in those with neuropathic pain

CONCLUSION

MOGAD may predominantly affect the grey matter, AQP4-Ab disease shows the most severely affected cord, localised to lesional areas. The MRI metrics used in this study do not differentiate these conditions but have clinical relevance in their association with disability and pain scores, independent of disease type.

REFERENCES & DISCLOSURES

Disclosures: R. Mariano is undertaking graduate studies funded by the Rhodes Trust. S. Messina has received travel grants from Biogen, Novartis, Bayer, Merck; Advisory and honorarium for advisory work from Biogen. A. Roca-Fernandez has no disclosures. A. Cavey has no disclosures. R. Everett has no disclosures. S. Reeve has no disclosures. M. Leite reported receiving speaking honoraria from Biogen Idec, and receiving travel grants from Novartis. Y. Kong is supported by The Chinese Academy of Sciences and The National Nature Science Foundation of China. J. Palace is partly funded by highly specialised services to run a national congenital myasthenia service and a neuromyelitis service. She has received support for scientific meetings and honorariums for advisory work and grants from Merck Serono, Novartis, Biogen Idec, Takeda and Bayer Schering. Her hospital trust received funds for her role as clinical lead for the RSS, and she has received grants from the MS Society, and Myasthenia gravis Foundation for research studies.