SMART PRAGUE and the City's ENERGY SAVINGS

SMART PRAGUE

G U E G A

13 NOVEMBER 2019 JIRKA PETERKA

The Vision of Smart Prague 2030

A better QUALITY OF LIFE in a PROSPEROUS CITY thanks to the ACTIVE USE of MODERN TECHNOLOGIES

Key Areas in the Vision and Thematic Spheres

Mobility of the future

Smart buildings and energy

Attractive tourism

A waste-free city

People and the urban environment

Data fields

OIOPERÁTOR CTICT

The Vision 2030 - Climate Commitment

The Prague City Council has authorized the climate commitment

By 2030 reduce CO_2 emissions by 45% versus the production of CO_2 in 2010

These goals are achievable also thanks to the huge potential of energy savings in buildings

Strategic Projects of Smart Prague

energy system Energy savings thanks to the EPC method

Energy management

> O I OPERÁTOR C T ICT

Building Energy System

- Prague owns more than 1,200 buildings and municipalities own another 3,000
- Initial building analysis using a proprietary methodology
- A system for rating the suitability of buildings for various energy measures
- Allows for qualified decision-making regarding investments in energy measures and innovations in buildings

Building Energy System used at Aquacentrum Šutka

Building card

Karta hodnocení budovy dle Metodiky

	Hate V ballovy							
			Aquacentrum Šutka	9				
	Kód budovy v ENO		11104470)				
	KÚ		Troja [730190]]				
	List vlastnictví		885	i				
	Ulice		Čimická	à				
	č.p.		848	1				
	par. č.		1087/2	2				
	Způsob využití		Budova pro kulturu					
	Způsob ochrany		památkově chráněné územi	í				
	Rok výstavby	•						
	Poslední technické zhodnocení (Inocení (r						
Obalka budovy								
č.	kritérium	Průměrné váhy	Hodnota	Zateplení	Body			
1	Obvodové stěny	0,31	Cihelené bloky (Porotherm apod.)	ANO	9,06			
2	Výplně otvorů	0,47	Kovová s izolačním zasklením		7,78			
3	Střecha	0,16	Plochá střecha	Částečně	5,93			
	Podlaha nejnižšího vytápěného							
4	podlaží	0,05	Podlaha vytápěného suterénu	ANO	8,95			
		Vážený so		7,94				

Recommendation methodology

	Vážený součet bodů		7,94	
	Technické zařízení budovy	Vedlejší		Roof insulation
č. kritérium	Hlavní zdroj	% využití zdroj	Body	riournsulation
1 Vytápění	0,20 CZT	100 2005	8,23	
2 Chlazení	0,18 Lokální zdroje chladu	5	0,35	
3 Větrání	0,15 Nucené větrání s rekuperací		7,50	Technolo
4 Uprava vlhkosti	0,18 Pro celou budovu		10,00	
5 Priprava TV	0,05 CZT	Průtočný	8,23	
7 Další technologické prvky	0,01 Zarrykove 0,06 kabina;Výtah;Serverovna;Kuchvně	<u>.</u>	9,54	measure
8 Způsob měření	0,04 Fakturační měřidla		2,00	modeare
9 Zavedený EM	0,04 NE		0,00	Lod light
	Vážený součet bodů		6,17	Lea iigiil
PENB	Kategorie			0
Celková dodaná energie		kWh/m²/rok		Efficient oc
Neobnovitelná primární energie		kWh/m²/rok		
Celková energeticky vztažná plocha		m²		
Doporučení				ot heat e
Obálka budovy	Zateplení střechy/stropu,		-	orribute
Technické zařízení budovy	Instalace podružného měření a regulace, Zavedení Energ	etického managementu		
				O L OPERATOR

tion

chnology easures d lighting ent source heat etc.

- A basic tool for monitoring energy consumption
- In place in 21 buildings e.g., the Jedličkův ústav facility, schools, seniors homes
- We are monitoring all the commodities

- Special combined sensors for monitoring temperature, CO2 and humidity levels
- A special sensor for monitoring volatile substances and oder
- Can for example detect colour fumes during restoration work in a museum
- Is a base for additional installation of the ventilation system in seniors homes

Graphic display of the consumption of commodities and measured levels from the sensors of indoor environment

- Based on this data we are able to uncover water leaks, optimize heating and regulate the quarter-hour maximum of electricity
- This data also serves as a base for group buying of all commodities and as a detailed analysis for the realization of EPC projects
- Evaluation of potential savings
- **Cost-savings** achieved for the city by organisational measures: more than 50 000. And **1t/year of CO2**

Energy Performance Contracting is a type of a contractual relationship in which:

- The supplier guarantees to the customer the contracted savings
- If the guaranteed savings are not achieved, the supplier compensates the difference to the customer
- The investment is paid for by the supplier of the solution and it is paid for from the savings

The buildings in which Prague will save

The Municipal house

The Holešovice Exhibition Grounds

Municipal Police Directorate

The Oliva Children's Sanatorium

The Šutka Aquacentre

The headquarters of the Technical Road Administration Company

> O I OPERÁTOR C T ICT

Standard technologies used in the buildings:

- Energy management
- Replacement of existing lighting fixtures with cost-saving LED panels
- Water savings with the use of water flow controllers
- Installation of thermostatic radiator heads
- Installation of new and more efficient sources of heat

Standard technologies used in the buildings:

- Installation of new and more efficient sources of heat
- Installation of thermostatic radiator heads

Special technologies employed in specific buildings:

- Energy Saver adjusts the voltage fluctuation and other parameters of electricity. This technology extends life time of electricity devices and saves 15% in consumption
- Installation of photovoltaic panels electricity for direct use

Special technologies employed in specific buildings:

- Preheating of pool water with waste shower water using a heat pump
- European technological innovation for cleaning and the reuse of pool water. This technology saves 30% in water consumption

O I OPERÁTOR C T ICT

Where we plan to save

How much will we save?

Guaranteed savings over 12 years of this project

€4 million

Guaranteed savings over 12 years of this project

37 615 t of CO₂

THANK YOU FOR YOUR ATTENTION

0 | C T

THERE AND ALL