

OFFSHORE WIND: Market, technological development and competitiveness

Prof. Mario González

RN-Brazil, March 15, 2021

Topics

Market

Technological development

Competitiveness

Timeline

CREATION – Innovation of Products and Processes for Offshore Wind Energy

- Case Research:
 - Offshore wind in developed markets: Denmark; UK; Germany.
 - Offshore wind in new markets : Taiwan, Japan and USA.
- **Research in onshore wind energy,** since 2010.
- Scientific missions:
 - England (2012; 2014; 2018)
 - Japan (2016)
 - Norway (2016)
 - Denmark (2015, 2016, 2017, 2018 and 2019)
 - Sweden (2017 and 2018)
 - Germany (2018; 2019)
 - Holland (2019)
 - Belgium (2019)
 - Portugal (2019)
 - Spain (2019)

- Technical visits:
 - Offshore blade factory (Siemens-Gamesa, England 2018);
 - Offshore nacelle factory (MHI Vestas, Denmark-2017)
 - Port of Cuxhaven (Germany 2018)
 - Port of Hull (England 2018)
 - Port of Barrow (England 2018)
 - Port of Esbjerg (Denmark 2018; 2019)
 - Port of Eemshaven (Holland 2019)
 - Port of Rotterdam (Holland 2019)
 - Port of Oostende (Belgium 2019)
 - Offshore wind farm of Middelgrunden (Denmark 2015; 2018)
 - Offshore wind farm of Fukashiba (Japan 2016)
 - Offshore wind farm of Lillgrund (Sweden 2017)

Research Projects

<u> 2010 - 2012</u>

• Performance Measurement in the Brazilian wind power supply chain

<u>2012 - 2014</u>

- Sustainable development of communities near of the Rio Grande do Norte wind farms 2013 2015
- Technological forecasting of wind turbines for wind energy (Onshore and Offshore)
 <u>2015 2017</u>
- Open innovation practice for technological development of Brazilian wind energy
 2016 2020
- Economic studies of infrastructure and the value chain of the offshore wind industry 2019 - Atual
- Economic studies and innovation for the development of offshore wind energy in Brazil
 <u>2019 Atual</u>
- Technical and economic and value chain studies of hybrid system: offshore wind and green hydrogen

Market

Offshore wind energy: market

Accumulated installed capacity (MW)

Fonte: CREATION (2020) a partir de GWEC (2017; 2020); WindEurope, 2020

Offshore wind energy: market

Accumulated installed capacity by country (MW)

2016 2019

Fonte: CREATION (2020), a partir de GWEC(2017; 2020); WindEurope (2020)

Offshore wind energy: market

Negotiated (lowest) price in the UK(\$/MWh)

UK Auction (USD/MWh)

Fonte: CREATION (2020) a partir de TCE (2019); WindEurope (2020)

Technological development: wind turbine

• The technological development of offshore wind turbines is taking place at an accelerated rate.

Source: CREATION (2020); GWEC (2020); WindEurope (2020)

Source: IEA (2019)

	Vestas V164	GE HALIADE X	Siemens Gamesa SG14	Vestas V236	IEA 15 MW	Concept 25 MW
Rated power (MW)	10	12	14	15	15	25
Available for Installation	2020	2021	2024	2024		
Blade size (m)	80	107	108	115	120	160

Source: CREATION (2021)

Turbine of 25 MW

- Conceptual turbine
- 2 blades
- Blade length:160 m

Fonte: Qin et al. (2020)

Blade case

Technological development: wind farm

Wind farm installation

Offshore wind farms: Timeline and competitiveness

Offshore wind farms: timelines (UK, Germany, Denmark)

Minimum distance from the coast (Km)

Source: CRIACAO (2020)

Offshore wind farms: timelines (UK, Germany, Denmark)

Minimum water depth (m)

Reino Unido

Fonte: CRIACAO (2020)

Competitiveness: Life cycle of offshore wind project

Competitiveness: Offshore wind power

Offshore wind power in Brazil

Offshore wind potential:

- 697 GW (EPE, 2019)
- 1,200 GW (WORLD BANK, 2020)

[1] Northeast: States (RN and CE):

High potential near the coast

- Distance from the coast [20 km]
- Depth of water [12 15 m]
- Average Capacity factor some projects = 61%

[2] Southeast and [3] South:

Great potential near load.

- Distance from the coast [40 km]
- Depth water [> 40 m]

Factors that influence the competitiveness

Final remarks

- Offshore wind farms have a higher Capacity Factor
- What is accelerating the cost reduction of offshore wind?
 - Increase in the rated power of the turbine;
 - Innovations in transport and installation of turbines;
 - Innovation in the O&M process;
 - Better coordination of the value chain.
- New markets (USA, Japan, South Corea, Taiwan, Portugal....)
- Offshore wind, **opportunities for Brazil**, due to
 - 1) High potential and wind quality,
 - 2) Existence of supply chain with synergies (onshore wind and Oil & gas offshore).

OFFSHORE WIND: Market, technological development and competitiveness

Prof. Mario González (mariogonzalez@ufrn.edu.br)

RN-Brazil, March 15, 2021