Exploring the knowledge and lessons from ETF project Big Data for LMI

Overview of the technical construction of the OJV data system: from landscaping of data sources to data visualisation

Mauro Pelucchi

November 2021
Topics

1. Overview & Recap
2. What is a pipeline?
3. Storage layer
4. Spark foundations
5. Lab sessions
 1. Find new job titles
 2. Find new occupations
Topics

1. Overview & Recap
2. What is a pipeline?
3. Storage layer
4. Spark foundations
5. Lab sessions
 1. Find new job titles
 2. Find new occupations
Information Extraction

- **Goal:**
 - Extract and structure information from data, to be provided to the presentation layer

- **Challenges:**
 - Handle massive amount of heterogeneous data written in different languages

- **Approach:**
 - Develop an adaptable framework, tailored on different information features. Some relevant challenges:
 - **Occupation** feature classification: combined methods such as Machine Learning, Topic Modeling and Unsupervised Learning
 - **Skill** feature classification: another different combined methods, such as Text Analysis with corpus based or Knowledge based similarity

- **Features:**
 - Guarantee Explainable information extraction, logging classification methods and relevant features.
Information Extraction is an area of natural language processing that deals with finding factual information in free text.

This task uses machine learning techniques (ontology based learning, supervised learning and unsupervised learning) to match job ads with standard classifications.

Machine Learning → Ontology based learning, supervised learning and unsupervised learning, etc.
Information Extraction: analyse an unstructured document with the scope of extracting specific information.
Junior Software Developer

As Junior Software Developer, you will develop excellent software for use in field mapping, data collection, sensor networks, street navigation, and more. You will collaborate with other programmers and developers to autonomously design and implement high-quality web-based applications, restful API’s, and third party integration.

We’re looking for a passionate, committed developer that is able to solve and articulate complex problems with application design, development and user experiences. The position is based in our offices in Harwell, United Kingdom.
Topics

1. Overview & Recap
2. What is a pipeline?
3. Storage layer
4. Spark foundations
5. Lab sessions
 1. Find new job titles
 2. Find new occupations
Data product anatomy

Sources

Ingestion

Incremental data

Ingestion

Datalake

Pipeline

Processing

ETL

Presentation

Presentation DB

Services
Data product anatomy
Data pipeline

Yet another computer program

Staging Area
Batch job

Job == function([input dataset]): [output dataset]

- Testable
- Atomic
- Deterministic
- Indempotent
- No other input factors
Pipeline details

1. Language detection
2. Pre-processing
3. Ontology based models
4. Machine learning model
5. Machine learning classifier
6. Classified items
Pipeline and language detection

- Vacancy
- Language 1
- Language 2
- Language 3
- Language n
Ontology based components

- Ontologies
- Ontology based models
- Classified items
A **regular expression** is a notation to specify a set of strings.
Regular expression for salary detection

- Regular Expressions (to split text)
- Regular Expressions (to isolate numbers)
- Currency conversion
- Classified items
Testing (single job)

How test the pipeline?

- Test the single job / single component
- Standard dataset (gold dataset or mock dataset)
 - Generate input
 - Run in local / small cluster
 - Verify output
What’s we need?
The toolkit

- Statistical Methods
 - Time series analysis
 - Multilevel modeling
 - AB testing
- Tools
 - Missing data imputations
 - Pattern recognition
 - Regression techniques
- User Experience Research
 - Data mining
 - Classification and clustering
 - Principal component and factor analysis
 - Forecasting
- Machine learning
- Network analysis
What’s we need?

The toolkit

<table>
<thead>
<tr>
<th>Statistical Methods</th>
<th>Tools</th>
<th>User Experience Research</th>
</tr>
</thead>
</table>

Languages
- Python
- R
- Scala
- SQL

Libraries
- Pandas
- Sklearn
- OpenNLP
- Spacy
- Fasttext
- Word2Vec
- H20.ai
- ...

Data Engineering
- Hadoop
- Spark
- Profiling
- ETL
- Job notices
- APIs
- Optimized data pipelines
- Optimized data storage/access

Visualization
- D3.js
- Gephi
- R
- Matplotlib
- Shiny
- Tableau

Cloud (AWS)
- CI/CD
What’s we need?
The toolkit

- Statistical Methods
- Tools
- User Experience Research
- Interactive Prototyping
- Service blueprinting
- User observation
- Journey mapping
Topics

1. Overview & Recap
2. What is a pipeline?
3. **Storage layer**
4. Spark foundations
5. Lab sessions
 1. Find new job titles
 2. Find new occupations
Key concepts

- Columnar Data Formats
- Delta lake
Filters are not the only “predicate” that can be pushed down.

Column selection can also be pushed down.

- With a database like PostgreSQL, this is done with a SELECT statement.
- For files, we require a Columnar File Format.

Data is stored by column, not by row.

- Parquet and ORC
- Delta lake format: Delta.io, Hudi, Iceberg

Compared to Row-Based File formats that store data by row:

- CSV, TSV, JSON, and AVRO
Concepts

An Example: Columnar vs Row-Based

Row-Based

<table>
<thead>
<tr>
<th>name</th>
<th>color</th>
<th>city</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Tom</td>
<td>red</td>
<td>32</td>
</tr>
<tr>
<td>Row 2</td>
<td>Sally</td>
<td>blue</td>
<td>87</td>
</tr>
<tr>
<td>Row 3</td>
<td>Mike</td>
<td>green</td>
<td>20</td>
</tr>
<tr>
<td>Row 4</td>
<td>Mary</td>
<td>yellow</td>
<td>55</td>
</tr>
</tbody>
</table>

Columnar

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Row 2</th>
<th>Row 3</th>
<th>Row 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Tom</td>
<td>Sally</td>
<td>Mike</td>
</tr>
<tr>
<td>color</td>
<td>red</td>
<td>blue</td>
<td>green</td>
</tr>
<tr>
<td>city</td>
<td>Chicago</td>
<td>Paris</td>
<td>London</td>
</tr>
<tr>
<td>age</td>
<td>32</td>
<td>87</td>
<td>20</td>
</tr>
</tbody>
</table>
What is **Delta Lake**?

Technology designed to be used with Apache Spark to build robust data lakes

Open source project at delta.io

Databricks [Delta Lake documentation](https://delta.io)
Delta Lake features

- ACID transactions on Spark
- Scalable metadata handling
- Streaming and batch unification
- Schema enforcement
- Time travel
- Upserts and deletes
- Fully configurable/optimizable
- Structured streaming support
Staging area

STAGING AREA = pipelines, ETL data and processes is like a restaurant kitchen

- Data in the staging area must not be accessible to the end user: they are not ready to be consumed.

- "Dangerous" operations take place in the staging area: data cleaning, lookups and joins, creation of data marts, ...

- Business users do not (and should not) care what happens during pipelines and ETLs.
Data lake

HOW DO DATA LAKES WORK?

The concept can be compared to a water body, a lake, where water flows in, filling up a reservoir and flows out.

1. Structured Data
1. Information in rows and columns
2. Easily ordered and processed with data mining tools

2. Reservoir of water is a dataset, where you run analytics on all the data.

3. Outflow of water is the analyzed data.

4. Through this process, you are able to “sift” through all the data quickly to gain key business insights.

Unstructured Data
1. Raw, unorganized data
2. Emails
3. PDF files
4. Images, video and audio
5. Social media tools

Credits: EMC
The Data Lake Paradigm

Data Warehouse
- Aggregated Subsets
- On-Demand Views
- Curated By Experts
- Structured - Tables, Views, Reports. Limited Context
- Data Quality Is Known And Tracked

Data Lake
- Store Everything As-is
- Let Business Decide What They Need
- Support Rapid Change
- Provide Data Lineage and History Tracking and Visualization
- Unstructured - Key-Word Search
- Data Is Available In Various States from Raw to Fully Conformed
- Quality Metrics Often Not Available
Modern Day Data Lake Architecture

- Schema-on-Read
- Descriptive Data Modeling
- New Data can start flowing any time and will appear retroactively
- Flexibility
- Scalability
- Rapid Data Ingestion
- Good for Exploration and Bottom-Up Approach
Recap & Keywords

- Pipelines and jobs
 - Yet another computer programs
 - Batch job
- Different types of components
 - Machine Learning Based, ontology based, reg-ex, ...
- Testing a pipeline
- Storage
 - Different format: json, parquet and delta.io
 - Different scope: metadata, data lake, staging area
Questions?
Topics

1. Overview & Recap
2. What is a pipeline?
3. Storage layer
4. Spark foundations
5. Lab sessions
 1. Find new job titles
 2. Find new occupations
De-facto standard unified analytics engine for big data processing

Largest open-source project in data processing
Key concepts & terms

• Shared resources
• Parallelization
• Partitions
• Jobs, Stages, and Tasks
• Drivers
• Executors
• Cluster & Nodes
• Cores/Threads
Can you open the bag... and eat all the brown... in 60 seconds?
Now about 100 bags of M&Ms within 60 seconds?
A gets bag #2...
B gets bag #3...
C gets bag #6...
and so on...
Instructions: Eat all the browns and pile the rest in the corner.
Some people are faster than others…

And yet others are a slower than the some…
4 of our workers are idle again...

They need new tasks!
All Done!

...and working...
Dataset
A Spark Job

Instructions: Eliminate all the brown candies and pile the rest in the corner.
Spark Execution

Spark application

Job

Stage 1

Task 1

Stage 2

Task 2
Spark Cluster

- **Driver**

 - **Worker**
 - **Executor**
 - **Task**
 - **Task**

 - **Worker**
 - **Executor**
 - **Task**
 - **Core**

 - **Worker**
 - **Executor**
 - **Core**
 - **Core**

 - **Worker**
 - **Executor**
 - **Task**
 - **Task**
Spark API

Spark SQL

Streaming

MLib

Spark Core API

R

SQL

Python

Scala

Java
Recap & Keywords

- Spark
 - Standard de-facto big data processing
- Lazy evaluation
- Dataset partitions
- Orizontal scaling
- Transformations & Components
Questions?
Topics

1. Overview & Recap
2. What is a pipeline?
3. Storage layer
4. Spark foundations
5. Lab sessions
 1. Find new job titles
 2. Find new occupations
Train a Word2Vec model to improve our ontologies:
- Start from 1 occupation
- Create a corpus
- Pre-processing
- Train the model
- Use the model to extract new job titles
Word embeddings depend on a notion of word similarity.

A very useful definition is paradigmatic similarity: Similar words occur in similar contexts. They are exchangable.

Yesterday POTUS The President Obama called a press conference
Intuition: Context also carries the meaning

I eat an **apple** every day.

I eat an **orange** every day.

I like **driving** my **car** to work.
Taxonomy improvement with Word-embeddings

Welcome!

In this notebook we first see an introduction about the concept of Word-Embedding and as we go on we'll learn how Word2Vec algorithms and see how can we implement them with the scope to improve our taxonomies (mainly ESCO occupations).

Please note that the main purpose of this notebook is to make familiar a beginner ML user with the mentioned concepts instead of focusing on the most efficient - or pythonic - way to write the code.

First we start by uploading the files we will use. This is a file with 25 observations: 5k for each occupation. We will start by processing one occupation.

```python
[1] from google.colab import files
    _source = files.upload()
```

Choose Files: esco_4occupations.csv
- esco_4occupations.csv (text/csv) - 1811573 bytes, last modified: 9/10/2020 - 100% done

Saving esco_4occupations.csv to esco_4occupations.csv

```python
[2] import io
    import pandas as pd
    df = pd.read_csv(io.BytesIO(_source['esco_4occupations.csv'])), sep = ',', delimiter=None, header='infer', encoding = 'utf-8')
    display(df)
```
Lab session

Find new occupations
Goal

Use LDA to improve our ontologies and extract new insights:
- Start from a corpus of job vacancies
- Pre-processing
- Apply some topic modelling techniques
- Extract new occupations
What «topic» means?

Observation
A group of words are likely to appear in the same context

A hidden (so, unknown) structure that helps determine what words are likely to appear in a corpus

A topic is a word-distribution over a fixed vocabulary