Increased frequencies of IgD-CD27 double negative (DN) B cells with a pro-inflammatory phenotype and function in multiple sclerosis patients

Fraussen J.¹, Beckers L.¹, Montes Diaz G¹, Villar LM², Van Wijmeersch B.^{1,3}, Somers V.¹

- Hasselt University, Biomedical Research Institute, and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
- Department of Immunology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- ³ Rehabilitation & MS-Center, Pelt, Belgium

Introduction

B cells are important players in multiple sclerosis (MS) pathogenesis:

- 1) Production of (auto)antibodies
- 2) Cytokine production
- 3) Antigen presentation & costimulation
- 4) Formation of ectopic lymphoid follicles

Immune aging

Changes in the immune system when people grow older:

Present in a proportion of MS patients

Age-associated IgD-CD27 double negative (DN) B cells

- Migration to inflammatory sites
- Autoantibody production Described in autoimmune diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA)

CSM: class-switched memory NCSM: non class-switched memory DN: double negative

Aim of the study

To investigate the prevalence and functional characteristics of DN B cells in MS patients

Patient sampling and methods

Study population

		Agea	% F	MS type				ED CCh	Previous
	n			CIS	RR	SP	PP	EDSS ^b	treatment
Freque	ncy of D	N B cells							
НС	42	41.8±12.1	69.1	NA				NA	NA
MS	88	41.9±11.5	71.6	0	63	14	11	3.4	UT: 77; TRT: 11
Expression of costimulatory and antigen presentation molecules									
НС	31	31±12.5	61.0	NA				NA	NA
MS	47	48±13.3	70.0	5	30	6	6	3.2	UT: 47
Chemo	kine rec	eptor expression	<u>on</u>						
НС	25	42.0±10.6	72.0	NA				NA	NA
MS	49	44.5±10.3	73.5	0	31	12	6	3.7	UT: 41; TRT: 8
T-bet e	xpressio	<u>on</u>							
НС	24	41.3±10.4	70.8	NA				NA	NA
MS	47	44.5±10.4	74.5	0	30	11	6	3.7	UT: 39; TRT: 8

a mean±SD; b mean; Abbreviations: F, female; CIS, clinically isolated syndrome; RR, relapsingremitting MS; SP, secondary progressive MS; PP, primary progressive MS; EDSS, expanded disability status scale; NA, not applicable; UT, untreated; TRT, treatment included first-line therapies: interferon-β, glatiramer acetate, teriflunomide.

PBMC 10⁵ CSM 21.7

- Expression of Costimulatory molecules: CD80, CD86
- Antigen presentation molecules HLA-DR/DP/DQ Chemokine receptors: CXCR3, CXCR5
- Transcription factor: T-bet

HLA: human leukocyte antigen; CXCR: C-X-C motif chemokine receptor; T-bet: T-box expressed in T cells

Cytokine production after in vitro B cell stimulation

B cell isolation

- IL-21 + anti-human

Granzyme B:

IgM/IgG

- - MS untreated: n = 7MS treated: n = 6HC: n = 10 (with similar age/gender)
 - PBMC: peripheral blood mononuclear cells; LT-a: lymphotoxin-a; TNF-a: tumor necrosis factor-a; IL: interleukin; Ig: immunoglobulin

In vitro chemotaxis assay 1 x 10⁵ unstimulated Cell counting & flow cytometry MS untreated: n = 7CD27- or CD27+ B cells 24 h C-X-C motif chemokine **PBMC** ligand (CXCL)10, CXCL13 CD27+ and CD27or no chemokine

migrated subtype cells with chemokine – # migrated subtype cells without chemokine Chemotactic index (CI) = start # of subtype cells in upper chamber

DN B cell frequency is elevated in MS peripheral blood and CSF

(A) The percentage of DN B cells in the peripheral blood of HC (n = 42), RRMS (n = 63), SPMS (n = 14) and PPMS (n = 11) patients younger than 60 years. Mean (bars) \pm SD is depicted. Black dashed line represents the cutoff for an increased frequency of DN B cells. (B) The percentage of DN B cells for paired PBMC and CSF cells from 6 MS patients. * p<0.05; ** p<0.01

DN B cells express functional molecules

Antigen presentation and costimulatory molecules

DN B cells showed similar or increased HLA-DR/DP/DQ expression as CSM B cells

DN B cells showed CD80/CD86 expression in between that of naive and CSM B cells

Pro-inflammatory chemokine receptors

fluorescence intensity, MFI) of C-X-C motif chemokine receptor (CXCR)3 and CXCR5 for naive, DN and CSM B cells from HC (n = 25) and MS patients (n = 49). Mean (bars) + SD is depicted. * p<0.05; **** p<0.0001

DN B cells showed CXCR3 and CXCR5 expression similar to naive and CSM B cells, respectively

DN B cells produce pro-inflammatory cytokines in vitro

The percentage of LT-a+ and TNF-a+ total, DN and CSM B cells after B cell stimulation using CD40 ligand for HC (n = 10) and MS patients (n = 13). Granzyme-B was measured after B cell stimulation with IL-21 + anti-human IgM/IgG. Mean + SD is depicted. * p<0.05; ** p<0.01; ****

DN B cells showed a similar frequency of LT-a+ cells and a higher frequency of TNF-a+ and granzyme-B+ cells compared with the CSM B cell population

DN B cells migrate towards pro-inflammatory cytokines in vitro

Chemotactic index (CI) for naive, DN and CSM B cells of MS patients (n = 7) in the presence of CXCL10 or CXCL13. Mean (bars) + SD is depicted. * p<0.05; ** p<0.01

MS DN B cells showed high migration capacity towards CXCL10 (CXCR3 ligand) and CXCL13 (CXCR5 ligand) that was similar to that of CSM B cells

A proportion of DN B cells express the transcription factor T-bet

Percentage and MFI of T-bet+ DN, CSM and naive B cells from HC (n = 24) and MS patients (n = 47). Mean (bars) + SD is depicted. *** p<0.001; **** p<0.0001

DN B cells showed highest T-bet expression compared with naive and CSM B cells, with about 21.6 % of DN B cells being T-bet+

Conclusions

- DN B cells are abnormally **elevated** in the peripheral blood and CSF of MS patients
- DN B cells could migrate into the central nervous system via chemokines involved in MS pathology
- DN B cells have pro-inflammatory functional characteristics
- DN B cells show highest expression of **T-bet**, that has been described in another pathological age-associated B cell subset
- Potential importance of DN B cells in MS pathology
- Could lead to novel targets for more specific MS therapy