# • AKERSHUS UNIVERSITY HOSPITAL



# Effect of vitamin D supplementation on axonal damage in relapsing-remitting multiple sclerosis

Egil Røsjø<sup>1</sup>, Trygve Holmøy<sup>1,2</sup>, Henrik Zetterberg<sup>3,4,5,6</sup>, Kaj Blennow<sup>3,4</sup>, Jonas Christoffer Lindstrøm<sup>2,7</sup>, Linn Hofsøy Steffensen<sup>8,9</sup>, Margitta T. Kampman<sup>8</sup>

<sup>1</sup>Department of Neurology, Akershus University Hospital, Lørenskog, Norway; <sup>2</sup>Institute of Clinical Medicine, University of Oslo, Oslo, Norway; <sup>3</sup>Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; <sup>4</sup>Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; <sup>5</sup>Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; <sup>6</sup>UK Dementia Research Institute at UCL, London, UK; <sup>7</sup>Services and Research Centre, Akershus University Hospital, Lørenskog, Norway; <sup>8</sup>Department of Neurology, University Hospital of North Norway, Tromsø, Norway; <sup>9</sup>Department of Clinical Medicine, University of Tromsø, Tromsø, Norway

| Background                               |
|------------------------------------------|
| The effect of vitamin D                  |
| supplementation in relapsing-            |
| remitting multiple sclerosis             |
| (RRMS) is not established <sup>1</sup> . |
| Neurofilament light chain (NfL)          |
| is a sensitive biomarker for             |
| axonal damage and an inverse             |
| relationship has been found              |
| between NfL and 25-hydroxy-              |
| vitamin D (25(OH)D) levels in            |
| RRMS <sup>2</sup> .                      |
|                                          |

#### Results

| saseline study pop                | oulation character                                 | ISTICS                   | Vitamin D    | group (N; 35)         | Placebo group (N; 33)              |  |
|-----------------------------------|----------------------------------------------------|--------------------------|--------------|-----------------------|------------------------------------|--|
| Females                           |                                                    | Ν                        |              | 24                    | 24                                 |  |
| Age (years)                       |                                                    | Mean (SD)                | 4(           | ) (8)                 | 41 (6)                             |  |
| EDSS score                        |                                                    | Median (95% CI)          | 2.5 (2       | 2.5-3.5)              | 2.0 (2.0-3.0)                      |  |
| Disease modifying treatment (DMT) |                                                    | Ν                        |              | <b>17</b> a           | 17 <sup>b</sup>                    |  |
| Disease duration (years)          |                                                    | Mean (SD)                | 12           | L (7)                 | 10 (7)                             |  |
| Annual relapse rate <sup>c</sup>  |                                                    | Mean (SD)                | 0.11         | (0.22)                | 0.15 (0.31)                        |  |
| 25-(OH)D (nmol/L)                 |                                                    | Mean (SD) 55.6           |              | (29.0)                | 57.3 (21.8)                        |  |
| Mean (SD) NfL lev                 | es during the stud                                 | y (pg/ml)                |              |                       |                                    |  |
| Patients                          | Study group                                        | Ν                        | Week 0       | Week 4                | 8 Week 96                          |  |
| AII                               | Vitamin D                                          | 35                       | 8.8 (4.3)    | 8.5 (4.3              | ) 7.9 (4.1)                        |  |
|                                   | Placebo                                            | 33                       | 10.6 (8.5)   | 9.7 (7.5              | ) <b>10.4 (8.9)</b> <sup>a</sup>   |  |
| With DMT                          | Vitamin D                                          | 17                       | 8.3 (3.9)    | 8.9 (3.7              | <sup>(</sup> ) 8.1 (4.1)           |  |
| at baseline                       | Placebo                                            | 17                       | 10.5 (9.8)   | 7.5 (2.5              | ) 7.7 (5.1)                        |  |
| No DMT                            | Vitamin D                                          | 18                       | 9.2 (4.7)    | 8.0 (5.0              | ) 7.5 (4.3)                        |  |
| at baseline                       | Placebo                                            | 16                       | 10.7 (7.9)   | 11.5 (9.7             | 7) <b>13.1 (11.0)</b> <sup>a</sup> |  |
| One value missing                 | of NIFL Lovels from                                | bacalina (0/)            |              |                       |                                    |  |
| vicali (JLI Ulidlige              | Aean (SE) change of NfL levels fron<br>Study group |                          | p-value      | Week 9                | 96 p-value                         |  |
|                                   | group                                              |                          | -            |                       | •<br>•                             |  |
| Study                             | nin D                                              | -5.2 (8.6)               | 0.55         | -12.0 (8.             | 6) 0.16                            |  |
| Study<br>Vitan                    |                                                    | -5.2 (8.6)<br>-4.1 (8.8) | 0.55<br>0.64 | -12.0 (8.<br>-4.8 (8. |                                    |  |

Objectives

Introduction

To establish whether high-dose vitamin D supplementation reduces serum levels of NFL.

Material and methods We analyzed the association between serum levels of NfL and 25(OH)D in a two-year randomized placebo-controlled trial (RCT) of high-dose oral vitamin D3 supplementation (20.000 IU/week) in 68 RRMS patients (NCT00785473)<sup>3</sup>. NfL and 25(OH)D were measured at baseline, week 48 and week 96 with a single molecule assay (Simoa) and mass spectroscopy, respectively<sup>4,5</sup>. Changes in serum NfL over time were analyzed using linear mixed models with follow-up time points, study arm, and the interaction between them as predictors. Log transformed NfL levels were used, and changes are therefore reported as percentages.

### Discussion

- This is to our knowledge the first RCT examining the effect of vitamin D supplementation on serum NfL as a marker of axonal damage in RRMS.
- The main result does not support an effect of vitamin D supplementation on serum NfL levels and is not in line with a previously reported association between high serum 25(OH)D and low CSF NfL levels by Sandberg et al<sup>2</sup>.
- The patient populations in these studies differ however, as Sandberg et al.<sup>2</sup> included patients with primary and secondary progressive MS, some of them used DMTs that were not used by the patients in our study, and their vitamin D levels were more variable.
- There was a trend for a beneficial effect of vitamin D supplementation in untreated patients that concurs with our previous findings suggesting an effect of vitamin D on inflammation in untreated RRMS patients<sup>6,7</sup>.
- Our study was limited by a relative small size, the patients had a low disease activity and a quite good baseline vitamin D status, and it is possible that daily supplementation of vitamin D is more effective than weekly dosing<sup>8</sup>.

## Conclusion

 With a possible exception for patients without disease modifying treatment, weekly oral supplementation with 20.000 IU vitamin D3 seems to have no clear effect on axonal damage in RRMS.

#### Literature

<sup>1</sup>Shoemaker TJ, Mowry EM. A review of vitamin D supplementation as disease-modifying therapy. *Mult Scler* 2018;24:6-11; <sup>2</sup>Sandberg L et al. Vitamin D and axonal injury in multiple sclerosis. *Mult Scler* 2015; 22:1027-31; <sup>3</sup>Kampman MT et al. Effect of vitamin D3 supplementation on relapses, disease progression and measures of function in persons with multiple sclerosis: exploratory outcomes from a double-blind randomised controlled trial. *Mult Scler* 2012; 18:1144-51; <sup>4</sup>Gisslen M et al. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. *EBioMedicine* 2016;3:135-140; <sup>5</sup>Steffensen et al. Can vitamin D supplementation prevent bone loss in persons with MS? A placebo-controlled trial. J Neurol 2011; 258:1624-1631; <sup>6</sup>Loken-Amsrud KI et al. Vitamin D and disease activity in multiple sclerosis before and during interferon-beta treatment. *Neurology* 2012;79:267-273; <sup>7</sup>Røsjø E et al. Vitamin D status and effect of interferon-beta1a treatment on MRI activity and serum inflammation markers in relapsing-remitting multiple sclerosis. *J Neuroimmunol* 2015;280:21-28; Hollis BW et al. Clinical review: The role of the parent compound vitamin D with respect to metabolism and function: Why clinical dose intervals can affect clinical outcomes. *J Clin Endocrinol Metab* 2013;98:4619-4628.