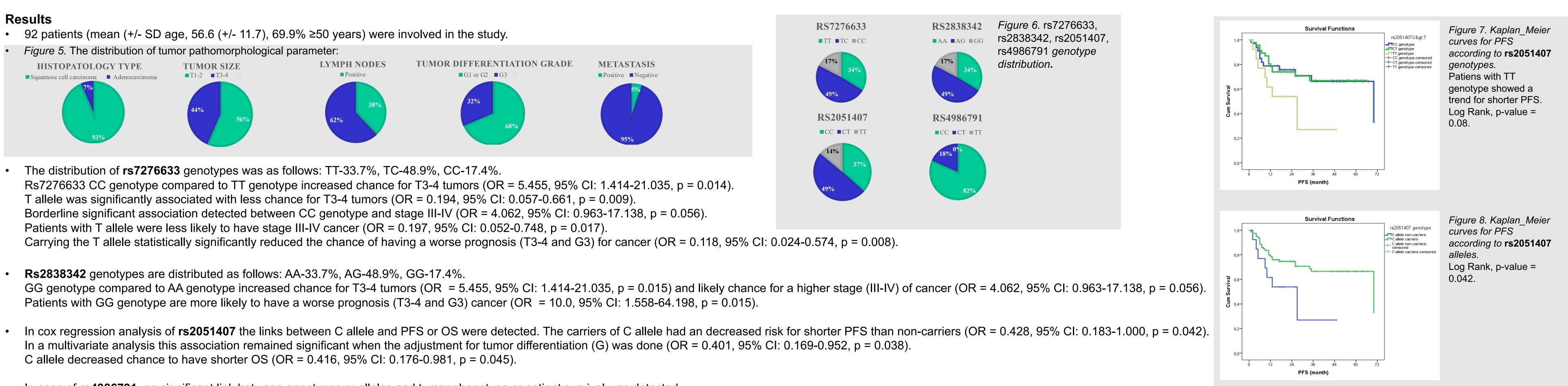
The analysis of polymorphisms in the TLR4 gene and their associations with the pathomorphological characteristics of cervical cancer and the course of the disease

Eglė Žilienė1, Arturas Inčiūra1, Rasa Ugenskienė2, Agnė Bartnykaitė2, Rūta Brazaitytė2, Elona Juozaitytė1 1 Oncology Institute, Lithuanian University of Health Sciences; 2 Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences

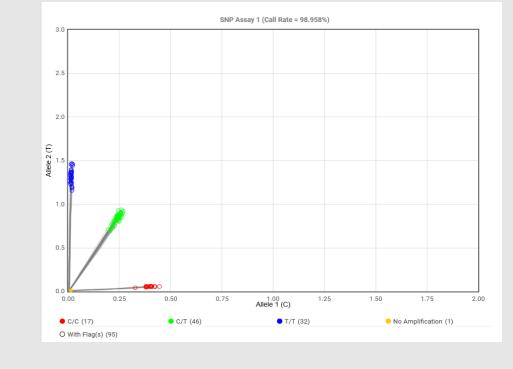

Objective

The risk of cancer is increased by additional factors that activate the immune system and cause inflammation. Toll-like receptors (TLRs) family plays essential role in the pathway of activating the immune response associated with autoimmune diseases, inflammation, and tumor-associated diseases. The signaling pathway of TLRs begins in the cytoplasmic TIR domain, contributes to the recognition of antigenic molecules such as lipopolysaccharides, nucleic acids, and activates the protein complex (NF-kB, IRFs MAP kinases) via the MyD88-dependent or MyD88-independent pathway. In this way, it regulates the production of cytokines, chemokines, type I interferon, thus eliminating antigens. Negative regulation of the signal path helps protect the host from inflammatory damage. TLRs can produce the desired antitumor effects by inducing the expression of inflammatory cytokines and the response of cytotoxic T lymphocytes. Changes in *TLR4* gene expression are involved in carcinogenesis and tumor process progression through chronic inflammation, forming a tumor microenvironment. However there is very little information on the impact of *TLR4* gene polymorphisms on cervical cancer as one of the most common oncological diseases.

We performed a study to determine the distribution of *TLR4* gene functional polymorphisms (rs7276633, rs2838342, rs2051407, rs4986791) in a group of patients with cervical cancer. Then we analyzed the correlations between genotypes and alleles with tumor pathomorphological parameters and course of the disease.

Results

Figure 5. The distribution of tumor pathomorphological parameter:

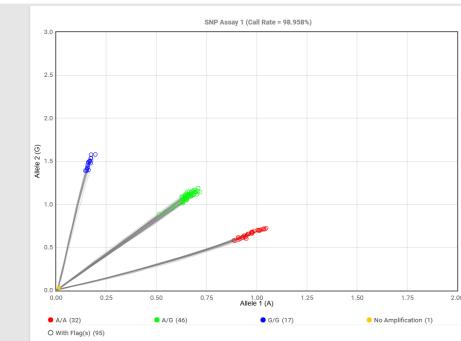


- The distribution of **rs7276633** genotypes was as follows: TT-33.7%, TC-48.9%, CC-17.4%.

- In case of rs4986791, no significant link between genotypes or alleles and tumor phenotype or patient survival was detected.

Methods

- Ninety-two patients with cervical cancer were enrolled in the retrospective study.
- Subjects were recruited from October 2014 to January 2019.
- Clinical data on patients and peritheral blood sample were collected.
- The obtained SNPs were used in further statistical analysis in genotype and allelic models.
- The statistical analysis was performed using SPSS.
- significant for all analysis.



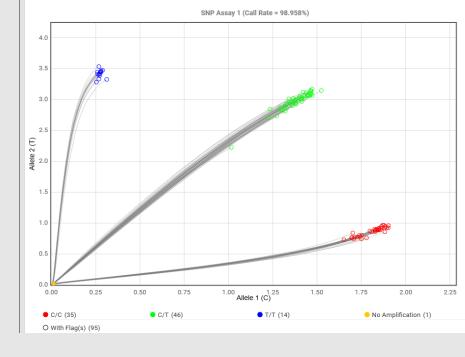

Figure 1. RT-PCR SNP assay (rs7276633).

Figure 2. RT-PCR SNP assay (rs2838342).

5th Kaunas / Lithuania International Hematology / Oncology Colloquium 26 JUNE 2020

Genomic DNA was extracted from leucocytes. Molecular genetic studies were performed using the real time polymerase chain reaction (RT-PCR) method (Figure from 1 to 4).

The associations between the genotypes and alleles with tumor characteristics were assessed using Pearson's Chi-square or Fisher's Exact tests. Univariate and multivariate and multivariate analysis to present odds ratios with 95% confidence intervals (CIs) and p-values were calculated with logistic regression. Differences in PFS and OS were assessed using hazard ratios (HRs) from univariate and multivariate Cox proportionate hazard models. p-value of <0.05 was considered statistically

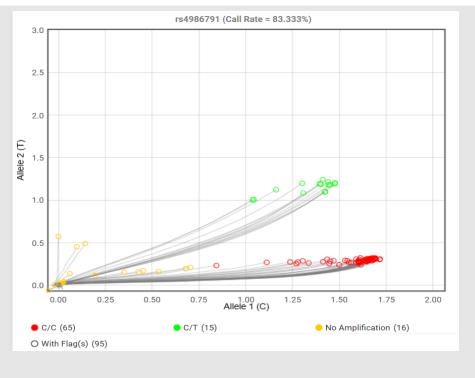


Figure 4. RT-PCR SNP assay (rs4986791).

Conclusions

The study suggests that SNPs rs7276633, rs2838342 may have the potential to be markers contributing to the assessment of the cervical cancer phenotypes. Rs2051407 may have implications for survival prognosis.

Key words

Cervical cancer, SNPs, *TLR4*, associations