

Meeting Industrial Gear Oil Challenges with Additive Technology

Fred Cui Afton Chemical Asia Pte. Ltd.

12th November 2019, Singapore

Agenda

Trends and challenges of industrial gear oil market

* How have the evolving OEM requirements driven industrial gear oil performances?

** Next generation additive technology to address the challenges

Industrial Gear Oil Market Drivers & Trends

Manufacturing migration

OEM influence & specs driven by field challenges

Shift in base oils (growing use of Group II / III)

Growth in energy demand

Health, Safety and Environment

KEY MARKET DRIVERS

Reliability
Strong focus on seal compatibility

Efficiency

Durability
Extended
equipment life
and ODI

Increased productivity
Increased power density

Total cost of ownership

Specialized fluid requirements

KEY MARKET TRENDS

What Will Drive Gear Technology and Lubrication?

Applications

Materials

- Growing wind turbine
- Growing food & beverage
- Growing robotics

- Smart Factory
 - Competition gear drive vs magnetic drive

Plastic gears

- Noise, Vibration, HarshnessOSHA regulation

- Automation / Robotic
 - Growth of precision gears and gear motors

- Coatings: DLC, WCC
 - 30% less friction

- Power density
- Efficiency
- Upttime operation

- **■** Digitalization
 - Gearbox Monitoring
 - Reliability and lifetime of equipment and lubricants

- **Powder Metal Gears**
 - High strength
 - Long wear resistance

Industrial Gearbox Trends and Lubricants Challenges

Global/OEM Industry Trends

- Gear oil is a component of gearbox
- Challenging operating conditions (Increasing power density and Higher operating temperature)
- Smaller sump sizes
- Improved micropitting performance
- Clean gear concept
- Extended oil drain interval
- Reduced energy consumption

Superior bearing/gear protection

- Corrosion protection
- Oxidation and thermal Stability
- Contamination control
- Excellent seal & paint compatibility
- Filterability / performance retention
- Improved foam and air release
- Improved friction
- Low temperature fluidity

Wide Applications and Challenges – Not All Industrial Gear Oils Are the Same

Others -- Wind turbine, Food, Wood, Paper, Conveyor

Source: Technavio Insights

Low

Planetary

Load Sump size 10 ~ 200 L ODI 0.6 ~ 2 years Mineral Oxidation Lubricants Stability

Small standard High Constant High torque ~ 5000 L

1~2 years Mineral / **Synthetic** AW / EP

RV / Harmonic reducer

High torque

20 ~ 60 L

2 ~ 3 years

Synthetic

AW / EP.

Friction

High Variable speed **Bi-direction** Shock, Shock,

High torque

400 ~ 600 L

5~10 years

Synthetic Balanced AW / EP

End-user Insight – Afton's Proprietary Research

Qualifications

- Maintenance personnel and engineers using industrial gear oils in industrial enclosed gearboxes
- Work full time maintaining heavy industrial machinery and accountable for fixing problems
- Deeply involved in lubricants and lubricant roles

End-user Interviews							
Industry	USA & Canada	China					
Mining & Quarry	4	3					
Steel & Metals	3	3					
Cement & Aggregates	3	3					
Pulp & Paper	3	3					
Petrochemicals	5	3					
Sugar Processing	-	3					
TOTAL	18	18					

Insight – End-user Gearbox Issues

End-user Gearbox Issues and Wants from an Industrial Gear Oil

Gearbox Issues

Wear Protection

Bearing Wear

Vibration

Gear Teeth Wear

Scuffing

Noise

Pitting

EP / Shock Load

Water Separation

Contamination Control

> Internal & External Contaminants

Filter Blocking

Foam

Viscosity Control

Gearbox Overheating

Viscosity in Differing Operating Conditions

Viscosity at Different Temperatures

Seal Compatibility

Leakages

Material Compatibility

Oxidative Stability

Oxidation **Properties**

Colour Stability

Extended ODI

Longer Drain Intervals

Wants from a new industrial gear oil

Increasing Importance

Industrial Gear Market Segmentation

Global IGO Demand: 935 KMT in 2018, growing to 988 KMT in 2027 (Kline)

• WT OEM: Vestas, GE, SGRE, Goldwind • Gear OEM: Winergy, ZF, NGC, Moventas Bearing: FAG, SKF, Miba Wind • Standard: IEC 61400, GB 33540.3 **Synthetic** Increasing temperature, Torque, Reliability and fluid **Turbine** AGMA/AWEA 6006--A03 Foam retention WEC prevention Flender Rev. 16 • SEW ZF Industry Improved efficiency Sumitomo (HIT) **Synthetic** Eickhoff Premium **Mineral** Micropitting protection & filterability ISO 12925-1 L-CKSMP Dynamic seal, sealant & paints compatibility ISO 12925-1 L-CKD **GB 5903 L-CKD** Additional attributes such as Clean Gear • DIN 51517-3 **Mainstream** GB 5903 L-CKC • ISO 12925-1 L-CKC AGMA 9005 F16 AS **Mineral** Bearing wear protection, extended EP protection, AIST 224 Robust Corrosion, Static seal compatibility **GB 5903 L-CKB Entry** ISO 12925-1 L-CKB • DIN 51517-1 Basic Performance, Non-EP Circulating Gear

Key Fluid Performance Drivers – OEMs Depend on Own Specs & Approvals

Various bearing & gear tests by OEMs Increased compatibility with non-metallic components (seals, sealant, filters & clutches)

FLENDER

Flender Rev.16 published October 2017

- FZG (A/8.3/90)
- Static/Dynamic seal compat
- FAG FE8 Bearing Inner/Outer paints compat
- FVA Micropitting
- Sealant compatibility
- Flender foam
- Flender Filterability

Pay attention to Energy Efficiency and Long Life / Extended Drain Interval.

ZF Industry

ZFN-W-17-145 Rev.3 released in Oct. 2019 Typical "Flender" performance

- ► FAG FE-8 Step 1 to 4
 ► Wet brakes compatibility
- DGMK 377-01 wear
 SKF roller and EmCor
- ASTM D2893 Oxidation at 121°C
- Various paint compatibilities
- Many additional liquid sealing compatibilities

Spec no. 07 004 03 13 released April 2016 SEW launched their own Genuine Gear Oil

- DIN 51517-3 is minimum requirement
- High focus on internal dynamic seal compatibility under most severe dynamic conditions
- FVA Micropitting

Gear Oil Standards – The Pace of Change is Quickening

Industry standards continues to grow in frequency focusing on key oil performance improvement

- Bearing wear and micropitting
- Static seal compatibility
- Environmentally friendly

Key OEMs focus own specification development on

- Dynamic seal compatibility
- Coating compatibility
- Filterability

Flender, SEW and ZF Industrial set the quality bar

Wind turbine gearbox OEMs (**ZF Wind, Winergy and NGC**) focus own specification development on

- Bearing wear (WEC prevention)
- Multi-metals compatibility
- Foam retention after filtration
- SKF EmCor salt corrosion

Gear Oil Specs – Key Performance Requirements

SPEC NAME	AIST 224	AGMA 9005 F16 Antiscuff Oil	DIN 51517-3 CLP	FLENDER Rev.16	SEW	ZF Industry
Rust Prevention	✓ (A & B)	✓ (A)	✓ (A)	✓ (A)	✓ (A)	✓ (A)
Copper Corrosion	✓	✓	✓	✓	✓	✓
Demulsibility	✓ ASTM D2711	✓ ASTM D2711	✓	✓	✓	✓
Oxidation Stability	✓ (121°C)	✓ (121°C)	✓ (95°C)	✓ (95°C)	✓ (95°C)	✓ (121°C)
Foam		✓ ASTM D892	✓ Flender	√Flender	✓ Flender	✓ Flender
Four Ball Wear & EP	✓				✓ (Optional)	
Timken	✓					
FZG A/8.3/90	✓	✓	✓	✓	✓ + A/16.6/90	✓
FAG FE8 Bearing Wear		✓	✓	✓	√+SRV (Option)	✓
FAG Stage 1-4						✓
FVA Micropitting				✓	✓	✓
Seal Compatibility			Static	Static & Dynamic	Static & SEW Dynamic	Static & Dynamic
Paint Compatibility				✓		✓
FZG slow speed wear					✓ (Optional)	✓
Wet brake compatibility						✓
SKF Roller / EmCor						✓

Next Generation IGO Additive Technology to Address the Challenges

SEW approval

ZF Industrial approval

FLENDER approval

DIN 51517 Part 3

ISO 12925-1 L-CKD

GB 5903-2011 L-CKD

GEAR

Wind Turbine Trends and Key Specifications for Gear Oils

Wind turbine size growth

Evolution of digitalization

Fast growing offshore installation

OEMs get into aftermarket

Increased torque density

Increasing ODI up to 10 years

Wind Turbine OEMs Vestas • GE

- Siemens & Gamesa
- Goldwind

Winergy

• NGC

ZF Wind

Moventas

Eickoff

Flender

Bearing OEMs

Miba

SKF

FAG

NSK

ndustry

- GB 33540.3
- ANSI.AWEA. AGMA 6006-A03
- ISO/IEC 61400
- DIN 51517-3
- ISO 12925-1 **CKSMP**

Next Generation Wind Turbine Gear Oil Additive Technology

How the Gear Oil Helps Prevent WEC – Afton's Research

- Lower thin film friction (TFF) to reduce surface and subsurface stress.
- Control friction as load increases to reduce surface stress during transients.
- Form a tribofilm that is rich in Phosphorus (P) to absorb the surface stress.
- Maintain tribofilm composition as the load and sliding increase.

50 µm

Industrial Robot Gear Lubrication – Market Needs a Standard

GEAR

