# Longitudinal study of functional brain network reorganization in clinically isolated syndrome

I.Koubiyr<sup>1,4</sup>, M. Deloire<sup>2</sup>, J. Charre-Morin<sup>2</sup>, A. Saubusse<sup>2</sup>, P. Coupe<sup>3</sup>, C. Dulau<sup>2</sup>, T.Tourdias<sup>1,2,4</sup>, P.Besson<sup>5,6</sup>, J.P.Ranjeva<sup>5,6</sup>, J. Pelletier<sup>5,6,7</sup>, B. Audoin<sup>5,6,7</sup>, B.Brochet<sup>1,2,4</sup>, A. Ruet<sup>1,2,4</sup>

<sup>1</sup>INSERM U1215 – Neurocentre Magendie, <sup>2</sup>CHU de Bordeaux, <sup>3</sup>CNRS, LaBRI, UMR 5800, PICTURA, <sup>4</sup>Universite de Bordeaux, Bordeaux, <sup>5</sup>AixMarseille Univ, CNRS, CRMBM UMR 7339, Marseille, <sup>6</sup>AixMarseille Univ, APHM, Hopital la Timone, CEMEREM, Marseille, <sup>7</sup>APHM, Hopital la Timone, service de Neurologie, Marseille, France

## Background

There is a lack of longitudinal studies exploring the topological organization of functional brain networks at the early stages of multiple sclerosis (MS) that could help to understand cognitive compensation.

#### **Objectives**

To assess potential brain functional reorganization at rest in patients with CIS (PwCIS) after 1-year of evolution and to characterize the dynamics of functional brain networks at the early stage of the disease.

## **Methods**

- 41 patients recruited less than 6 months after a CIS with at least two asymptomatic cerebral lesions on FLAIR and 19 HC matched for age, sex and educational level.
- 3T brain MRI scan including 3D T1-weighted images, FLAIR and Resting-State functional MRI were acquired at <u>baseline</u> and <u>1-year</u> after.
- Attention, working memory (WMem), episodic memory (EMem), executive functions (EF) and information processing speed (IPS) were assessed by a neuropsychological battery.
- Destrieux parcellation was obtained using FreeSurfer 5.3.
- Graph-based network measures calculated: Global efficiency (Eglob), Local efficiency (Eloc), Betweenness centrality (BCN) and Degree (Deg).
- Hub disruption index (κ) of each measure was estimated as the slope of the following graph:

 $(Network\_Measure_{subject} - Network\_Measure_{ControlMean}) = f(Network\_Measure_{ControlMean})$ 

- Connectivity measures were compared globally with Hub disruption index, and locally in different regions of the brain.
- Correlations between cognition and connectivity were computed at baseline and longitudinally (accounting for age, sex and level of education).



# **Results**

Patients mean age was 38.3 years with 78% females. 64% of patients had a high level of education.

- Functional connectivity
- ➢ <u>Baseline</u>
- The hub disruption indexes of <u>degree</u> and <u>betweenness centrality</u> were significantly <u>negative</u> at baseline in patients (p<0.001 and p<0.05, respectively) (Figure 1) → meaning that the hubness tended to decrease mainly in the hub regions and tended to increase mainly in the non-hub regions → Regionally, these alterations were mainly driven by increased hubness in the right middle temporal gyrus (Figure 3)</li>
- No global efficiency differences were observed between the patients and the HC → compensatory effect
- ➢ <u>1 year</u>
- After 1 year, a similar pattern of brain network disruption was present in the patients, as the hub disruption indexes for degree and betweenness centrality were significantly negative (p<0.00001), but such reorganization appeared more pronounced than at baseline (Figure 2) → Regionally, these alterations were mainly driven by increased hubness in bilateral hippocampus, post-ventral cingulate gyrus, and left parieto-occipital sulcus and decreased hubness in the right middle occipital gyrus and the left posterior segment of the lateral fissure (Figure 3)</li>
- No global efficiency differences were observed between the patients and the HC → compensatory effect

#### **Cognitive impairment**

- <u>At baseline</u>: Only a moderate cognitive impairment was noticed at baseline, as only the computerized speed cognitive test (CSCT) and the brief visual memory test revised (BVMTR) were altered.
- After 1 Year: This cognitive impairment was no longer observed after 1-year as PwCIS showed no significant differences compared to HC.

#### □ <u>Relationships between network topology and cognition</u>

➤ Hub disruption index of betweenness centrality was observed to be correlated to delayed recall of the BVMTR (BVMTR-DR) as r = -0.32 and p<0.05 at 1 year → This indicates a more pronounced brain network reorganization as the cognitive performances are getting better.

Figure 2. Hub disruption index of PwCIS at 1-year

Hub disruption index of (A) degree (B) betweenness centrality. Red denotes an increased degree in the PwCIS compared to HC; blue denotes a decreased degree in the PwCIS compared to HC.

# Conclusions

- ➢ For the first time, dynamic changes of functional brain networks are observed in CIS patients → The pattern of functional connectivity reorganization remained the same during the first year but tended to be more pronouced at 1-year.
- At the first stage of the disease, regional reorganization of connectivity is associated with the maintenance of normal global efficiency and cognition suggesting a compensatory effect.

# Literature

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009.

Fleischer V, Radetz A, Ciolac D, et al. Graph theoretical framework of brain networks in multiple sclerosis: A review of concepts. Neuroscience 2017.

Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010.





Hub disruption index of (A) degree (B) betweenness centrality. Red denotes an increased degree in the PwCIS compared to HC; blue denotes a decreased degree in the PwCIS compared to HC.

Figure 3. Regional differences in degree and betweenness centrality between PwCIS and HC at baseline and 1-year



Betweenness centrality



decreased degree in the PwCIS compared to HC.

Copyright © 2018 I.Koubiyr et al. Presented at the 26th Annual Meeting of the European Charcot Foundation